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Two-Dimensional Mechanism of Hovering Flight
by Single Flapping Wing

Dokyun Kim, Haecheon Choi*
School of Mechanical and Aerospace Engineering, Seoul National University,

Seoul 151-744, Korea

Numerical simulations are conducted to investigate the mechanism of hovering flight with an

inclined stroke. The Reynolds numbers considered are 150 and 1000 based on the maximum

translational velocity and wing chord length. Three mechanisms responsible for high vertical

force generation, suggested by Dickinson et al.(1999), are confirmed and more elaborated in the

present study. First, we show that the vertical force during downstroke is larger than that from

the quasi-steady analysis due to the delayed stall mechanism. Second, the wing-wake interaction

of reducing the negative vertical force during the stroke reversal is explained in terms of the

reattachment of the vortex, shed previously during downstroke, on the wing, by which the wing

is submerged in a low pressure region during upstroke and has a smaller negative vertical force.

Finally, the rotational circulation is explained by advancing the rotation timing of the wing at

supination using both the numerical simulation and inviscid potential theory.
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Nomenclature

a : Major axis of the ellipse

An . Stroke amplitude

b > Minor axis of the ellipse

c : Chord length of the wing

Co . Drag coefficient

Cu . Horizontal force coefficient

CeL . Lift coefficient

Cro: . Hydrodynamic lift force coefficient due
to wing rotation

Cy . Vertical force coefficient

Cva . Vertical force coefficient due to added
mass

Cves - Vertical force coefficient with the quasi-
steady assumption

f - Wing beat frequency

Jed . Gravity acceleration
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1. Introduction

The insect-flight mechanism is important in
biomechanics due to its direct applicability to the
design of micro air vehicles. The first advance in
the theory of insect flight was made by Weis—
Fogh and Jenson (1956), who introduced a quasi-
steady analysis. The quasi-steady analysis is such
that the instantaneous force on the flapping wing
is calculated from the steady state condition. How-
ever, Ellington (1984a) showed that the quasi-
steady analysis fails to explain high lift generated
by the hovering motion of some insects. Hovering
flight is an ideal case for investigation of unsteady
mechanism since it is the extreme condition where
the flight velocity is zero. Therefore, unsteady mech-
anisms, which may explain such high lift, have
been investigated by many researchers over the
past two decades in the case of hovering flight.

One of the most important unsteady mechanisms
is associated with the generation of a leading-
edge vortex, called delayed stall : i.e., when a wing
starts impulsively from rest at an angle of attack
larger than the stall angle, a large vortical struc-
ture is generated at the leading edge of the wing,
and this intense leading-edge vortex increases lift
until it sheds from the wing (Francis and Cohen,
1933). This mechanism was first verified by Walker
(1931) for the model aircraft wing at a high angle
of attack. However, the lift enhancement by the
delayed stall did not persist after a few chord
lengths of travel and lift dropped as the leading-
edge vortex shed.

On the other hand, recent experiments about
insect flights showed that the leading-edge vortex
does not shed even after several chord lengths of
travel. Ellington et al.(1996) visualized the flow
around a flapping wing using a hawkmoth flap-
per model and observed an intense leading edge
vortex during the whole downstroke period. They
suggested that this leading edge vortex is stabi-
lized by the spanwise helical flow existing along
the wing axis and thus lift is enhanced by sustain-
ing the attachment of the leading-edge vortex on
the wing. This new three-dimensional mechanism
was numerically confirmed by Liu et al.(1998).

However, this spanwise helical flow was not ob-
served in a fruitfly flapping model (Birch and
Dickinson, 2001). The corresponding Reynolds
number of the fruitfly model is much lower than
that of the hawkmoth model (Ellington et al.,
1996). Therefore, the three-dimensional mech-
anism (the stabilization of the leading-vortex by
the spanwise helical flow) may not be applicable
to insect flights at low Reynolds numbers.

Recently, Dickinson et al.(1999) proposed three
mechanisms from the experiment of the model
wing of a Drosophila: delayed stall, rotational
circulation, and ‘wake capture’. While the delayed
stall occurs during the translational phase of the
wing motion, two other mechanisms are related to
the stroke reversal of wing. They measured forces
on the wing and found that double peaks oc-
curred during the stroke reversal. The first peak
occurred while the wing was rotating, and they
suggested that the wing rotation itself serves as
a source of circulation to enhance the lift force.
This mechanism, called rotational circulation, is
similar to the Magnus effect because the sign of
this peak is determined by the timing of wing
rotation. The second peak occurred right after the
wing rotation, and they concluded that this peak
occurs due to the interaction between the wing
and vortex shed previously. This wing-wake in-
teraction was called ‘wake capture’ in Dickinson
et al.(1999). However, the detailed feature of this
‘wake capture’ was not given in that study due to
the complexity of flow around the wing during
the stroke reversal.

Sun and Tang (2002) conducted a three-dimen-
sional numerical simulation of flow from the wing
motion of a fruitfly whose kinematics is similar to
that in Dickinson et al.(1999). They concluded
that wake from the previous stroke reduced lift
because it generated downwash velocity in front
of wing. Therefore, they did not accept the idea of
lift enhancement by wing-wake interaction. In-
stead, it was suggested that rapid acceleration of
wing at the beginning of wing stroke is the main
reason for the force peak during the stroke re-
versal. At present, this controversy has not been
resolved.

Although the real insect flight is fully three-
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dimensional, recent two-dimensional numerical
simulations show interesting and useful results.
Wang (2000) investigated the hovering motion of
a dragonfly by two-dimensional numerical simu-
lation and showed that a sufficient vertical force
can be generated by a two-dimensional figure-
eight wing motion to stay aloft. Wang et al. (2004)
showed that there is no noticeable discrepancy
in force generation between the two-dimensional
computation and three-dimensional experiment.
These two numerical results suggest that three-
dimensional simulations are not necessarily re-
quired to explain high lift generated during hov-
ering motion. Therefore, two-dimensional simu-
lation is an appropriate and effective tool to in-
vestigate unsteady mechanisms for high lift gen-
eration.

In contrast to most insects hovering with a
horizontal stroke, some insects such as dragon-
flies hover with an inclined stoke. The inclined
stroke has a disadvantage for the generation of the
vertical force (in the opposite direction to that of
the gravitational acceleration), because a negative
one is generated during the upstroke. However,
dragonflies have fascinated scientists because of
their great aerodynamic performance and maneu-
verability. Therefore, it is interesting to study how
dragonflies can generate such high vertical force
in spite of an inclined stroke. Fig. 1 shows three
different wing motions according to the force-
generating mechanism. For hovering with a hori-
zontal stroke, sometimes called normal hovering,
vertical forces are provided by lift alone, whereas
for hovering with a vertical stroke, called rowing,
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Three different wing motions according to the

Fig. 1
force-generating mode : (a) normal hovering
with a horizontal stroke ; (b) rowing with a
vertical stroke ; (c) hovering with an inclined
stroke

they are generated only by drag (Vogel, 1994).
Flapping with an inclined stroke may be consid-
ered as a combination of horizontal and vertical
strokes, and both drag and lift contribute to the
vertical force in this case.

So far, nearly no research has been performed
on the hovering with an inclined stroke as com-
pared to a horizontal stroke. Wang (2000) con-
ducted two-dimensional numerical simulation for
hovering motion of a dragonfly and observed that
the vortices shed from the leading and trailing
edges of the wing form a vertical-force-generating
vortex dipole when the wing rotates at the end of
downstroke motion. She suggested that this vor-
tex dipole generation is a crucial unsteady mech-
anism for the hovering motion of a dragonfly.
However, this explanation is not sufficient to ex-
plain high lift generation by the inclined stroke,
and other unsteady mechanisms should be searched
for and examined further.

Therefore, the objective of the present study is
to numerically investigate the unsteady mech-
anisms of the hovering with an inclined stroke.
We examine in detail three unsteady mechanisms,
originally conjectured by Dickinson et al.(1999) :
delayed stall, wing-wake interaction and rota-
tional circulation. In this study, we provide a new
explanation for the wing-wake interaction from
the temporal evolution of vortical structures around
the wing. The effects of wing acceleration and
rotation are also studied by using the concept of
added mass and circulation theorem, respectively.
The wing shape considered in the present study is
a two-dimensional elliptic wing (Wang, 2000).
The Reynolds numbers investigated are Re=150
and 1000 based on the maximum translational
velocity during flapping and the chord length of
the wing. These Reynolds numbers correspond to
the flapping motions by the fruitfly and dragon-
fly, respectively (Birch and Dickinson 2001 ;
Wakeling and Ellington 1997).

2. Numerical Details

Figure 2 shows the flapping motion with an
inclined stroke and the force definition on the
wing. Following Wang (2000), the position of the
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stroke plane

upstroke
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downstroke

Fig. 2

downstroke upstroke
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Fig. 3 Variation of @ in time: ——, symmetric
rotation (#:=0); —---, early rotation (£s<

0). Here T is the period of flapping motion

wing center (X,yc) is given by

xc=0.5An cos (27ft) cos 8

9e=0.5An cos (27ft)sin B ()

where An=2.5¢. Cy and Cy denote the horizon-
tal and vertical force coefficients, and C; and Cp
are the lift and drag coefficients, respectively (see
Fig. 2(b)). The thickness-to—chord ratio of the
wing is s/ c=0.125 following Wang (2000).
Figure 3 shows the time variation of angle «,
For flapping flight, the wing rapidly rotates and
changes its direction during the stroke reversal.
The counter-clockwise rotation of the wing at
the end of upstroke is called pronation and the
clockwise one at the end of downstroke is called
supination. For real insects, pronation and supi-

stroke plane

(b)

(a) Flapping motion of the wing; (b) definition of the forces during downstroke

nation are approximately equal in duration, and
each action period is relatively short compared
with the translation period (Ellington, 1984b). In
order to represent these characteristics, we model
a(t) in the following manner :

T T
—T£t<7

T T 3
stanh{a<t—7—tsﬂ+y, Ty

£ tanh(—4t) +7,

a(t)= (2)

Here, T is the period of flapping motion, £=
(@u—aa) /2, y=(au+as) /2, and aq and a, are
the constant values of @ during the downstroke
and upstroke translation periods, respectively, as
shown in Fig. 3. § is a parameter determining the
rotation period and is chosen to be §=2 for most
simulations conducted in this study. At §=2, the
rotation period occupies about 30% of the total
flapping period. fs is a parameter adjusting the
timing of rotation at supination. For £,=0, the
pronation and supination occur symmetrically,
but the supination occurs earlier for £s<<0. Unless
otherwise specified, #s=0 in this paper.

In order to simulate the flow around a flapping
wing, the Navier-Stokes and continuity equations
are transformed in a fully conservative form in a
non-inertial reference frame fixed to a wing body
(Beddhu et al., 1996 ; Kim and Choi, 2006) . Also,
an immersed boundary method developed by Kim
et al.(2001) and Kim and Choi (2006) is used to
satisfy the no-slip condition on the wing surface
in a Cartesian coordinate system by providing
momentum forcing and mass source/sink, respec-
tively, into the Navier-Stokes and continuity equa-
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tions. Then, the governing equations become

(%)r—kv-[(u—v)uﬁ-uw]

1 )
N 2.
=—Vp+ Re Vau+f

V-u—g=0 (4)

where u=u;+v, v=2 Xx'+R"u4, and w=2X
x’. As for the immersed boundary method (Kim
and Choi, 2006 ; Kim et al., 2001), f is the mo-
mentum forcing vector defined at the cell faces
like the velocity vector, and ¢ is the mass source/
sink defined at the cell center. The momentum
forcing and mass source/sink are zero outside
the body. The details about how to determine f
and ¢ are described in detail in Kim et al.(2001)
and Kim and Choi (2006). The time integration
for Egs. (3) and (4) is based on a fractional-step
method and we use a second-order semi-implicit
time advancement scheme consisting of a third-
order Runge-Kutta method for the convection
terms and the Crank-Nicolson method for the
diffusion terms. The second-order central differ-
ence scheme is used for all the spatial derivative
terms in a staggered grid system. All the variables
are non-dimensionalized by the maximum trans-
lational velocity #max during flapping and the
chord length of the wing c¢. The cross-section of
the wing adopted in the present study is an ellipse
with a thickness-to—chord ratio of 0.125 accord-
ing to the model suggested by Wang (2000). Two
Reynolds numbers of Re=100 and 1000 are con-
sidered in this study.

The size of the computational domain used
is —20¢<x’<20c¢ and —20¢<y'<20c¢. The con-
vective boundary conditions (Pauley et al., 1990)
are used for all outer boundaries. Non-uniform

s e

Fig. 4 Mesh near the wing

meshes are used with dense grid clustering around
the wing for accurately resolving the vortical mo-
tion there. The numbers of grid points are 370 X
416 in x” and y’ directions, respectively. Fig. 4
shows the mesh near the wing, where 50 X25 grid
points are uniformly distributed inside the wing.

First, we simulate the same flow considered in
Wang (2000), flow around a hovering wing with
an inclined stroke. The cross-section and center
position of the wing are the same as above. Fol-
lowing Wang (2000), the angle of attack is de-
fined as

co-F-Fm()

where @’=a— {8 (Fig. 2). The values of the kine-
matic parameters considered by Wang (2000) are
An=2.5c and 8=60°, and the simulation is car-
ried out at Re=157.

Figure 5 shows the time sequence of the span-
wise vorticity at Re=157. As shown in this fig-
ure, the rotation of the wing combines vortices

(c) (d)

Fig. 5 Time sequence of the spanwise vorticity for

B=60° at Re=157: (a) t/T=0.25; (b) 0.45;

(c) 0.75; (d) 0.95. The vorticity contour levels

are wzC/ Umax=—8~38 by increments of 0.8.
Negative values are dashed
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shed from the leading and trailing edges of the
wing as observed in Wang (2000). The vortical
evolution shown in Fig. 5 is essentially the same
as that in Wang (2000). Fig. 6 shows the time
historis of forces on the wing, together with those
by Wang (2000). In general, the present result
agrees well with that by Wang (2000). However,
there is a certain difference between two solutions
in the beginning of the downstroke and upstroke.
We doubled the grid points and the computation-
al domain size, respectively, but the same results
as shown in Fig. 6 were obtained. The reason for
such a difference is unclear at present. Our nu-
merical method and computer code have been

tested for various flow problems (Kim and Choi,
2006) .

3. Results

In this section, we investigate three mechanisms
responsible for high vertical force, originally con-
jected by Dickinson et al.(1999), during hovering
motion : delayed stall, wing-wake interaction and
rotational circulation.

3.1 Delayed stall
As mentioned previously, delayed stall occurs
when a wing starts impulsively from rest at an

25 , 25¢ : ,
2f ' 2F i
15F : - i
: H 1.5 '
1k : :
= 1 H
"l AN | |
Cy F . :,": Cv 0'5_ !
-05: ¥ oF —
af U N i
15 A Tt | !
-2 H -1 i H
L N 5 i i
25 65 7 15, 55 5 85
t/T t/T
(a) (b)
Fig. 6 Time histories of the force coefficients at Re=157: (a) Cu; (b) Cv. , Present study ; ----, Wang
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Fig. 7 Time histories of the vertical force coefficients at Re=150: (a) 8=60° (az=75° and a,=150°):

(b) B=90° (@z=90° and @,=180°). —, Cv; -
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angel of attack larger than a stall angle. Then a
large vortex forms at the leading edge of the wing
and increases drag and lift. Therefore, the quasi-
steady analysis (Ellington, 1984a) cannot explain
the high lift during flapping motion. Fig. 7 shows
the time histories of the vertical force for the cases
of 8=60° and 90°, together with the quasi-steady
vertical force (Fygs=Cras*1/20ubaxcl), force due
to added mass (Fyo=Cra*1/2puzaxcl) and their
sum. Here, Cygs is obtained as follows : Given the
translational velocity #4 and angle @ of the wing
at each time £, we conduct an unsteady numerical
simulation and obtain the time-averaged drag
and lift forces on the wing, Fpgs(#) and Fres(#),
respectively. Then, the quasi-steady vertical force
coefficient Cygs becomes

2
CVqs<f>: Fegs _ ud2<t> 1 FDqs<t> sin[;’
7‘07/{r2r1axcl Unmax jpuﬁ(l/‘) cl
6
ui(t)  Fie(?) (©

2 cos f8
Umax %puﬁ(t)cl

The force due to added mass, which is the hydro-
dynamic force due to the acceleration of the wing,
can be obtained by (Newman, 1986)

_ duax _ duay
Fo= dt mi dt M2 (7)
+ U ax 221 + udy.Qlez
_ duax _ dutay
Fo= dt 21 dt 22 (8)

— Uax$2mi1 — udy.lez

where #axr=1uq cos B and usy=1u4sin 5. The add-
ed mass tensor [#2] for an ellipse with major and
minor axes of ¢ and b, respectively, in the moving
reference frame (x’,y’) is (Newman, 1986)

mh=rmob? (9)
Mh2=T0a" (10)
Miz= Mz =0 (11)

When the ellipse is inclined at an angle a— 4
from the x-axis, the added mass tensor is [m]=
R (a—pB) [mR(a—B) where R is the rotation-
al matrix. Then, the added mass tensor in the (x,
y) coordinates becomes

mu=nob’ cos®(a—B) + moa® sin*(a—p) (12)
map=rnob?sin®(a—B) +moa® cos®(a—B) (13)

Miz=ma=—meb?sin(a—B) cos (a— )

+mpa?sin(a—B) cos (a—p) (14

The vertical force coefficient due to added mass
becomes

Cra=—y—Tor (15)
jpuéaxcl

where F,, is obtained from Egs. (8), (12), (13)
and (14).

It is clearly shown in Fig. 7 that during the
translation period of downstroke, the force coeffi-
cient from the quasi-steady assumption (Crgs) is
quite different from that obtained from unsteady
simulation (Cy). However, when the quasi-steady
force coefficient is added by the added-mass force
coefficient, it (Cyqgs+ Cra) becomes much closer
to Cy but still is smaller during most downstroke
period than, supporting the conclusion of Ellington
(1984a). On the other hand, the negative Cy near
the end of the downstroke is larger than Cygs+
Cyq for =90° (Fig. 7(b)) and the negative Cy
at the initial period of upstroke is smaller than
Crgs+ Cvq for §=60° (Fig. 7(a)). Therefore, it is
clear that the behavior of the vertical force during
the stroke reversal cannot be explained by the
delayed stall mechanism.

Since the mechanism of delayed stall is closely
associated with the angle of attack during the down-
stroke motion, it should be interesting to search
for an optimal angle of attack (@) at which the
vertical force becomes maximum at a given stroke
plane angle, and also to find a simple relation be-
tween the optimal angle of attack and the stroke
plane angle. Hence, we investigate the effect of
aq on the vertical force for each stroke plane
angle §3, while fixing @,=150° for 3=30° and 60°,
a,=180° for f=90° (rowing; Fig. 1(b)), and
ay=180°— @, for 3=0° (normal hovering ; Fig. 1
(a)).

Figure 8 shows the variations of the time-av-
eraged lift, drag and vertical force coefficients
during the downstroke motion with respect to aq
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for f=60°, together with the vertical force avera-
ged over one flapping period (Cy). The behavior
of the force variation at Re=150 is similar to
that at Re=1000. The drag increases almost line-
arly with increasing aq, but the lift is maximum
near aq=45° and decreases with further increase
of aq. Therefore, the vertical force during down-
stroke becomes maximum at @z=75°~80° for A=
60°, because (CV) down™— <CD) down SN ,8‘|‘ <CL> down COS ﬁ
The vertical force averaged over one flapping
period, Cv, is also maximum at ¢z=75°~80° for
B=060°.

Figure 9(a) shows the variation of the optimal
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@4 (@q) for maximum vertical force with respect
to B for both Reynolds numbers. It is interesting
to note that @4 is almost linearly proportional to
£, indicating that the drag component is the
major source of the vertical force with increasing
/8, whereas the lift component becomes the main
source as B3 approaches zero. In Fig. 9(b), the
maximum time-averaged vertical force coefficient
(i.e. Cy at @) is shown with respect to 3. As
shown, the vertical force is maximum at 8=60°
for both Reynolds numbers and minimum at
£=90°, which partially explains why the dra-
gonfly hovers at 8=60° (Norberg, 1975) or less
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(Wakeling and Ellington, 1997) at the Reynolds
number of about 1000.

In order to analyze this interesting result, the
time histories of the vertical force coefficient for
B=0° 60° and 90° are shown in Fig. 10. In the
case of normal hovering (A=0°), the vertical
force is generated purely by the lift component
and is positive during most of flapping motion.
Note also that Cy during 0<¢/ T <0.5 is not the
same as that during 0.5<¢/7T <1 due to the vor-
tical interaction of the wing. This asymmetry
occurs even after long-time computation and is
determined by the initial movement direction of
the normal hovering. On the other hand, in the
case of rowing (£=90°), very large positive and
negative instantaneous vertical forces (as com-
pared to those in normal hovering) exist during
the flapping motion. However, due to the negative
one generated during upstroke and the end of
downstroke, the mean vertical force becomes smaller
than that in normal hovering (see Fig. 9(b)). In
the case of inclined stroke at #=60°, the negative
region of the vertical force is significantly reduced
as compared to that in rowing (8=90°), while
keeping the large positive region of Cy. More-
over, during the early stage of upstroke, the nega-
tive vertical force is even smaller than that of the
quasi-steady force (see Fig. 7(a)). Hence, the
largest mean vertical force is obtained for 8=60°
(Fig. 9(b)).
havior of the vertical force during the stroke

As mentioned previously, the be-

1
Fig. 10 Time histories of the vertical force coeffi-
cient (Re=150): ----, 8=0° (@;=45° and
ay=135°); —+—+—+-, B=90° (a4=90° and
a,=180°); ——, f=060° (@;=75° and ay=
150°)

reversal cannot be explained by the delayed stall
mechanism, and is associated with the interaction
between the wing and the vortices, which is dis-
cussed in the following section.

3.2 Wing-wake interaction

Dickinson et al.(1999) suggested wing-wake
interaction mechanism (called ‘wake capture’) for
normal hovering motion during the stroke re-
versal. In the present study, we further elaborate
on this mechanism from the time sequence of
vortical motion and its interaction with the wing
for an inclined stroke.

Figure 11 shows the time sequence of the span-
wise vorticity for #=90° at Re=150 and the in-
stantaneous pressure at /7T =0.45. The wing gen-
erates a pair of vortices at the wing edges during
downstroke (Figs. 11(a) and 11(b)). These vor-
tices also move downward due to the self-induced
motion. Near the end of downstroke, the wing
speed is significantly reduced but the vortices
keep moving downward (Fig. 11(c)). The down-
ward velocity induced by the pair vortices impacts
on the upper wing surface, which causes a high
pressure region there (Fig. 11(f)) and thus gen-
erates a large negative vertical force (Fig. 7(b))
even though the wing is still moving downward.
Furthermore, during the initial period of upstroke
(Figs. 11(d) and 11(e)), the wing passes through
the region of downward velocity induced by the
pair vortices shed during the downstroke motion
of the wing, which again produces a large nega-
tive vertical force on the wing (Fig. 7(b)). There-
fore, in the case of rowing, the wing suffers from
the vortices generated during the downstroke
motion and has a relatively small value of the
mean vertical force even though rowing produces
a large positive vertical force during downstroke.

On the other hand, in the case of inclined stroke
at f=60°, the interaction between the wing and
vortices is very different from that in the case of
rowing. Fig. 12 shows the time sequence of the
spanwise vorticity for #=60° at Re=150 and the
instantaneous pressure at ¢/ 7" =0.55. Similar pair
vortices as observed in the case of rowing are gen-
erated from the leading and trailing edges of the
wing during downstroke (Figs. 12(a) and 12(b)).
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()

Fig. 11 Time sequence of the spanwise vorticity for f=90° (rowing) at Re=150 and instantaneous pres-
sure at £/ T=0.45: (a) vorticity contours at #/T=0.25; (b) 0.35; (c) 0.45; (d) 0.55; (e) 0.65;
(f) pressure contours at t/ T=0.45. The velocity vectors are also shown in (c). The vorticity con-
tour levels are w:C/umax=—10~10 by increments of 0.67 and the pressure contour levels are
b/ oumax=—1~1 by increments of 0.067. Negative values are dashed in this figure. See Fig. 7(b) for
the corresponding vertical force on the wing

(d)

Fig. 12 Time sequence of the spanwise vorticity for §=60° (inclined stroke) at Re=150 and instantaneous
pressure at ¢/ T=0.55: (a) vorticity contours at ¢/ T=0.25; (b) 0.35; (c) 0.45; (d) 0.55; (e) 0.65;
(f) pressure contours at ¢/ 7°=0.55. The velocity vectors are also shown in (c). The vorticity con-
tour levels are w:C/umax=—10~10 by increments of 0.67 and the pressure contour levels are
b/ oubax=—1~1 by increments of 0.067. Negative values are dashed in this figure. See Fig. 7(a) for
the corresponding vertical force on the wing
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However, these vortices do not follow the wing tra-
jectory but move rather in the direction of gravity.
Thus, the wing is less exposed to the downwash
motion induced by these vortices near the end of
downstroke (Fig. 12(c)) and a much smaller nega-
tive vertical force occurs in the case of inclined
stroke (Fig. 7(a)). Moreover, during the early
stage of upstroke (Figs. 12(d) and 12(e)), the
upper wing surface seizes the leading edge vortex
shed previously during downstroke. This vortex
capture results in a low pressure region on the
upper wing surface during upstroke (Fig. 12(f);
otherwise high pressure forms there) and a smaller
negative vertical force occurs during upstroke
(Fig. 7(a)). As mentioned, this kind of wing-
wake interaction does not occur for £=90°, which
explains the sharp decrease in the mean vertical
force at §=90° (Fig. 9(b)).

In order to see the Reynolds number effect,
numerical simulations are conducted at Re=15
and 1000 for 3=60°. Fig. 13 shows the temporal
variations of the vertical force coefficient for three
different Reynolds numbers. The behaviors of the
vertical force are different among themselves, es-
pecially during upstroke. At Re=15, there is no
vortex shedding because of too low Reynolds
number (Fig. 14(a)) and thus one cannot expect
any wing-wake interaction mechanism. There-
fore, a very large negative vertical force exists dur-
ing upstroke. On the other hand, the strength of
shed vortices becomes higher at Re=1000 as
shown in Fig. 14(c) and a smaller negative verti-

(a)

cal force occurs due to the wing-wake interaction.
Therefore, the effect of wing-wake interaction
increases with the Reynolds number.

As mentioned earlier, the major disadvantage
of an inclined stroke is the negative vertical force
produced during upstroke. However, the wing-
wake interaction reduces this negative vertical
force and enables the hovering motion with an
inclined stroke to generate a sufficient vertical
force.

3.3 Rotational circulation

Dickinson et al.(1999) argued that the wing
rotation near the end of stroke enhances lift be-
cause it generates a circulation on the wing. This

downstroke upstroke

L o B e e N e
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1F , ;
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_3:| sl | .-I...-I.l..i.n | MR e S P
0 0.5 1.0
1T
Fig. 13 Time histories of the vertical force coeffi-
cient at 3=60°: ----, Re=15;——, Re=
150; -»-----, Re=1000

Fig. 14 Contours of the instantaneous spanwise vorticity for §=60° at ¢/ T=0.45: (a) Re=15; (b) Re=
150 ; (c) Re=1000. The contour levels are wzc/ umax=—10~10 by increments of 0.67. Negative values

are dashed in this figure
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argument is consistent with the result of Bennett
(1970), who found that the lift force is augment-
ed when the angle of attack increases before the
stroke reversal. For a two-dimensional wing rota-
ting with an angular velocity £ in an inviscid
fluid, the rotational circulation [, can be de-
rived theoretically, satisfying the Kutta condition
(Ellington, 1984c):

Dznch(%—%) (16)

where xo is the distance between the axis of rota-
tion and the leading edge. Thus, by applying the
Kutta-Jukowski theorem, the hydrodynamic lift
force in the vertical direction due to wing rotation
is obtained :

Frot:pud['r (17)
Using this theoretical estimation, we study the
contribution of wing rotation to the vertical force
by changing the timing of rotation. In contrast to
normal hovering, however, early rotation near the
end of upstroke causes a detrimental effect on the
vertical force in the case of inclined stroke be-
cause drag (and thus negative vertical force) in-
creases at the pronation. Hence, in this study, we
change only the timing of supination by altering
s (see Eq.(2) and Fig. 3). When we changed
ts=0 into t,=—0.07T, we found that §=2 pro-
duced non-smooth d@/dtin time. So, we changed

downstroke upstroke

Cyv 3 Crot

0 0.5 1.0
t/T
(a)

0=2 into §=3 for £{s=—0.077, which provided
smooth da/dt in time with the rotation period of
20% out of the total flapping period.

Figures 15(a) and 15(b) show the time histo-
ries of the vertical force coefficients for /s=0 and
—0.07 T, respectively. Note that with early rota-
tion (Fig. 15(b)), the vertical force (Cy) is sig-
nificantly reduced at the supination. Also shown
in Fig. 15, the rotational hydrodynamic force is
induced by wing rotation from Egq.(16). For
ts=0 (Fig. 15(a)), the rotational hydrodynamic
force at the supination is quite small since the
translational velocity of the wing is low when the
wing begins to rotate. Moreover, an equal amount
of negative rotational force is generated after
t/ T=0.5 because the direction of velocity is re-
versed. However, for #s=—0.077, a large posi-
tive rotational hydrodynamic force is generated
at the supination (Fig. 15(b)). Thus, the negative
vertical force is significantly reduced when rota-
tion occurs earlier at the end of downstroke, and
this is explained by the circulation theorem.

34 Effect of wing shape

So far, the cross—section of the wing has been
taken to be an ellipse with a thickness-to-chord
ratio of s/c=0.125 following Wang (2000). The
shape of the dragonfly’s wing, however, is close to
a thin flat plate rather than an ellipse. Hence, in

downstroke upstroke
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Fig. 15 Time histories of the vertical force coefficients at 8=60°, §=3 and Re=150: (a) £=0;
1
(b) ts=—0.07T. I CV; T, Crot (:Fmt/ipux%laxcm
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downstroke

upstroke

downstroke upstroke

Fig. 16 Time histories of the vertical force coefficient for §=60°: (a) Re=150; (b) Re=1000. —, Elliptic

wing (&/c=0.125); ——-

order to see the effect of the wing shape on the
vertical force, we conduct numerical simulations
for the flat-plate wing with two different thick-
ness—to—chord ratios of 0.1 and 0.05.

Figure 16 shows the temporal variations of the
vertical force coefficient for three different wing
shapes at Re=150 and 1000. It is clear from this
figure that the behaviors of the vertical force are
almost same for different wing shapes at this low
Reynolds number range. Therefore, the details of
the wing cross-section may not be so important in
the insect flight at this Reynolds number range
once it is thin enough.

4. Conclusions and Further
Remarks

In this study, we simulated the hovering motion
of single flapping wing using an immersed bound-
ary method in a non-inertial reference frame, in
order to investigate the mechanisms, originally
conjectured by Dickinson et al.(1999), responsi-
ble for the high vertical force generated by an
inclined stroke in hovering motion. Numerical
simulations were performed at Re=150 and 1000
for different stroke plane angles and angles of
attack.

We showed that an inclined stroke in hovering
motion generates a high vertical force by three

-, flat plate (#/c=0.1); —-—+-+-, flat plate (%/c=0.05)

different mechanisms. First, during the translation
period of downstroke, the vertical force is larger
than that from the quasi-steady analysis due to
the delayed stall mechanism. Since the attack angle
is directly connected with the delayed stall, we
found that the optimal angle of attack of prod-
ucing maximum vertical force is a linear function
of the stroke plane angle. Two other mechanisms
(wing-wake interaction and rotational circula-
tion) explain the vertical force behavior occuring
during the stroke reversal, i.e., when the wing
rotates and changes its direction. The mechanism
of wing-wake interaction is found to be the vor-
tex escape and capture during the stroke reversal.
That is, at the end of downstroke, the wing es-
capes from the downwash motion induced by a
pair of vortices generated during downstroke and
thus a much smaller negative vertical force occurs
on the wing. On the other hand, during the early
stage of upstroke, the wing captures the leading
edge vortex, shed previously during downstroke,
on its upper surface, resulting in a low pressure
region on the upper wing surface and thus a smaller
negative vertical force on the wing. We also show-
ed that the effect of wing-wake interaction is
more pronounced at higher Reynolds number.
Finally, the mechanism of rotational circulation
is confirmed by advancing the timing of wing
rotation at supination. That is, when the wing
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rotates earlier near the end of downstroke, the
negative vertical force is significantly reduced,
and this phenomenon is also explained by the
inviscid potential theory.

So far, we have considered the two-dimension-
al mechanisms responsible for the high vertical
force generated by an inclined stroke in hovering
motion. Although these two-dimensional mech-
anisms are crucial to high lift generation as also
supported by other researchers (Wang, 2000 ;
Wang et al., 2004), the fluid flow around insect
flight is essentially three-dimensional and thus
three-dimensional effects such as the spanwise
helical flow found by Ellington et al.(1996) and
the wing tip vortex should be considered for
the explanation of high vertical force generation.
These three-dimensional effects may influence the
two-dimensional mechanisms investigated in the
present study : e.g., the spanwise helical flow en-
hances the delayed stall mechanism as suggested
by Ellington et al.(1996) and confirmed numer-
ically by Liu et al.(1998), and the wing tip vortex
may affect the wing-wake interaction mechanism.
However, one of the most important questions is
how much these three-dimensional effects con-
tribute to the total vertical force. In order to an-
swer this question, we currently conduct numeri-
cal simulations of flow generated by a three-
dimensional flapping motion, and the result will
be published elsewhere.
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